The n-queens puzzle is the problem of placing n
queens on an n x n
chessboard such that no two queens attack each other.
Given an integer n
, return all distinct solutions to the n-queens puzzle.
Each solution contains a distinct board configuration of the n-queens' placement, where 'Q' and '.' both indicate a queen and an empty space, respectively.
Example 1:
Input: n = 4Output: [[".Q..","...Q","Q...","..Q."],["..Q.","Q...","...Q",".Q.."]]. Q . . . . Q .. . . Q or Q . . .Q . . . . . . Q. . Q . . Q . .
Explanation: There exist two distinct solutions to the 4-queens puzzle as shown above.
Example 2:
Input: n = 1Output: [["Q"]]
0 1 2 30 . Q . .1 . . . Q2 Q . . .3 . . Q .
关于斜对角线上的限制可以得出以下两条规律。
右上到左下
斜线点发现规律: 横坐标与纵坐标之和为定值
。(0, 0)
(0, 1)、(1, 0)
(0, 2)、(1, 1)、(2, 0)
(0, 3)、(1, 2)、(2, 1)、(3, 0)
(1, 3)、(2, 2)、(3, 1)
(2, 3)、(3, 2)
(3, 3)
左上到右下
斜线点发现规律: 横坐标与纵坐标之差为定值
。(3, 0)
(2, 0)、(3, 1)
(1, 0)、(2, 1)、(3, 2)
(0, 0)、(1, 1)、(2, 2)、(3, 3)
(0, 1)、(1, 2)、(2, 3)
(0, 2)、(1, 3)
(0, 3)
/*** @param {number} n* @return {string[][]}*/var solveNQueens = function(n) {const result = []const limit = {used: [],x: [],y: [],sum: [],diff: []}handleNQueens(n, 0, limit, result)return result};// eg: when n is 4, arr is [["0,1", "1,3", "2,0", "3,2"], ["0,2", "1,0", "2,3", "3,1"]]var generate = (arr) => {const xArr = []for (let x = 0; x < arr.length; x++) {const [queueX, queueY] = arr[x].split(',')let yStr = ''for (let y = 0; y < arr.length; y++) {if (x === Number(queueX) && y === Number(queueY)) {yStr = yStr + 'Q'} else {yStr = yStr + '.'}}xArr.push(yStr)}return xArr}// handle the position with the index row from n Queue.var handleNQueens = (n, index, limit, result) => {if (limit.x.length === n) {result.push(generate([...limit.used]))return}// 第 index 行安置在第几列中for (let y = 0; y < n; y++) {const sum = index + yconst diff = index - yif (limit.used.indexOf(`${index},${y}`) > -1|| limit.x.indexOf(index) > -1|| limit.y.indexOf(y) > -1|| limit.sum.indexOf(sum) > -1|| limit.diff.indexOf(diff) > -1) {continue}limit.used.push(`${index},${y}`)limit.x.push(index)limit.y.push(y)limit.sum.push(sum)limit.diff.push(diff)handleNQueens(n, index + 1, limit, result)limit.used.pop()limit.x.pop()limit.y.pop()limit.sum.pop()limit.diff.pop()}}